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The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of
Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the
need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of
turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computa-
tionally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and geneti-
cally divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was
confirmed for all the tested constructs, which provided clinical protection against the homologous and
heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers
compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and
focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The
COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the
wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades
2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform
in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against
homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be
used against antigenically distinct co-circulating viruses and future drift variants.
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Since its emergence in 1996 in Guangdong, China, H5N1 high
pathogenicity avian influenza (HPAI) viruses of A/goose/Guang-
dong/1/1996 (Gs/GD) lineage have spread globally infecting
domestic and wild birds and occasionally spilling over into mam-
mals, including humans [1–4]. Over time, the H5Nx HPAI Gs/GD
lineage has diverged into multiple phylogenetically and antigeni-
cally distinct clades and subclades based on the H5 hemagglutinin
(HA) gene, and antigenic variants resistant to many vaccine seed
strains have emerged [5]. Such genetic and antigenic diversity
has created challenges in maintaining relevant H5 seed strains
for poultry vaccines [6]. Therefore, the development of a broadly
protective H5 influenza A vaccine that can provide coverage for
antigenically distinct co-circulating viruses and future drift vari-
ants is highly desirable.

Several strategies have been investigated to broaden the reper-
toire of neutralizing antibodies in inactivated influenza vaccines or
other non-replicating vaccine platforms that express influenza HA,
including multivalent H5N1 vaccines [7,8], targeting conserved
domains of HA [9–12], and synthetic consensus DNA antigen-
based vaccines [13–17]. In line with the latter strategy, the previ-
ously described methodology termed computationally optimized
broadly reactive antigen (COBRA) was utilized to generate antigens
with novel H5 HA consensus sequences [18,19]. In previous studies
using mice, ferrets, and cynomolgus macaques, COBRA HA antigen
virus-like particle (VLP) vaccines protected against lethal challenge
with homologous and heterologous H5N1 HPAI virus, showing
more efficient viral clearance and broader antibody responses
against different clades and sub-clades than monovalent or polyva-
lent vaccines [18,20,21]. In our recent study, COBRA HA VLP vacci-
nes provided clinical protection in chickens challenged with a
lethal dose of homologous H5N1 HPAI virus [22]. However, upon
challenge with a drifting variant H5N1 HPAI virus, COBRA HA
VLP vaccines provided no or partial clinical protection in chickens,
and reduction of virus shedding was suboptimal with both chal-
lenge strains [22]. Moreover, the robust HA antibody response eli-
cited by COBRA vaccines against the drifted strain did not translate
to protective efficacy upon challenge with this virus [22]. Collec-
tively, these results emphasized the need to further improve anti-
gen consensus sequences and vaccine formulation in order to
enhance both clinical protection and reduction of virus shedding
upon challenge with antigenic diverse HPAI strains.

The use of a live virus as vector platform could improve COBRA
HA efficacy. Immunization using Marek’s disease (MD) virus sero-
type 3, also known as herpesvirus of turkey (HVT), is used world-
wide to protect chickens against MD. In addition, HVT has been
developed and licensed as a live vectored vaccine to protect against
many important viral poultry diseases thanks to its persistent
replication in the host, its ability to induce both humoral and
cell-mediated immunity, and its relatively easy production and
administration, among other advantages [23–27]. In vivo recombi-
nant vector HVT with H5 insert (vHVT-H5) have demonstrated
promising results against HPAI in poultry [26,28–34]. In particular,
laboratory and field studies suggest that vHVT-H5 vaccines protect
birds against a wide range of H5 HPAI Gs/GD lineage viruses, in
addition to being able to overcome the neutralizing effect of
maternally-derived antibodies against H5 [26,28–34]. However,
recent reports have demonstrated variable protection with vHVT
vaccine in chickens when tested against genetically divergent
North American clade 2.3.4.4 HPAI viruses [35,36]. Coupling
COBRA and vHVT technologies could improve H5 HPAI virus
control in the field. The objective of this study was to evaluate
the efficacy of several experimental vHVT-H5 vaccines containing
different H5 HA gene inserts against challenge with genetically
diverse H5 HPAI Gs/GD lineage viruses.
1934
2. Materials and methods

2.1. Generation of vaccine recombinant viruses

Constructs of live vHVT vaccine containing different full-length
H5 HA gene inserts were made as previously described [37] (Fig-
ure S1). The wild-type recombinant expression cassettes (REC)
containing the codon-optimized full-length H5 HA sequences were
driven by either the SV40 promoter (vHVT501) or the mouse cyto-
megalovirus (CMV) promoter (vHVT510). A modification of the
wild-type H5 HA REC contained the same sequence as vHVT510
but glycosylated at residue A156T (vHVT510G). All HA sequences
in the wild-type H5 HA REC were derived from A/turkey/
Washington/61-22/2014 (H5N2) (GenBank accession number
AJM70587.1), an isolate belonging to clade 2.3.4.4A. The COBRA
REC contained computationally optimized H5 HA sequences
COBRA A, COBRA B, or COBRA C, all driven by mouse CMV pro-
moter. The design and characterization of the COBRA HA antigens
have been previously described [18,20,21]. Briefly, the COBRA HA
antigens were generated by multiple rounds of consensus genera-
tion using HA sequences from H5N1 clade 2 human-origin viruses
collected from 2004 to 2006. The polybasic cleavage sites of all H5
sequences were modified to low pathogenic (LP) type. The full-
length HA amino acid similarities between H5 inserts and chal-
lenge viruses are shown in Table S1.
2.2. Expression analysis of recombinant protein

Each of the constructs were passaged for an average of 12
rounds in chicken embryo fibroblasts (CEF) beyond the pre-
master seed (X + 12). The X + 12material of all recombinant viruses
generated was evaluated for expression by indirect dual
immunofluorescence antibody (IFA) assay. The virus-inoculated
CEF were fixed after 48–72 h of infection with ice-cold 95% acetone
for 5 min at room temperature and air-dried for 10 min. After rehy-
dration with phosphate-buffered saline (PBS), the CEF monolayer
was incubated with two primary antibodies, chicken anti-H5N2
sera (Charles River, North Franklin, CT, USA) diluted 1:500 and
L78 monoclonal antibody against HVT (Boehringer Ingelheim Ani-
mal Health (BIAH) USA Inc., Gainesville, GA, USA) diluted 1:3000, at
37 �C for 1 h. After three washes with PBS, cells were incubated
with two secondary antibodies, rabbit anti-chicken IgG-
fluorescein isothiocyanate (FITC) (Sigma Aldrich, St Louis, MO,
USA) diluted 1:500 and donkey anti-mouse IgG-Alexa Fluor 568
(Molecular Probe #A10037, lot#1752099) diluted 1:300, at 37 �C
for 1 h. After three washes with PBS, cultures were examined for
dual expression of H5 and HVT with a fluorescent microscope
using FITC- and tetramethylrhodamine isothiocyanate-filters. The
X + 12 material of all recombinant viruses generated was also eval-
uated for recombinant gene integrity by PCR of REC from viral gen-
ome and sequencing.
2.3. Challenge viruses

The influenza A isolates clade 2.3.4.4A A/turkey/Min-
nesota/12582/2015 H5N2 HPAI virus (Tk/MN/15) (GenBank acces-
sion numbers KX351776-83) and clade 2.2.1 A/Egypt/
N04915/2014 H5N1 HPAI virus (Egypt/14) (GISAID
EPI_ISL_262572) were used as challenge viruses. The Tk/MN/15
virus clusters both phenotypically [38] and phylogenetically [39]
with clade 2.3.4.4A Midwest H5N2 viruses and represented the
homologous challenge virus in this study. The Egypt/14 is the wild
type strain for one of the clade 2.2.1 candidate influenza vaccine
viruses, World Health Organization (WHO) [40] and represented
the heterologous challenge virus in this study. The full-length H5
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amino acid similarity between the homologous and heterologous
challenge viruses was 90.5% (Table S1). Working stocks were pre-
pared and titrated in embryonated chicken eggs (ECE) using stan-
dard methods [41]. Stocks were diluted to the target dose with
brain heart infusion (BHI) broth (Becton, Dickinson and Company,
Sparks, MD, USA) with penicillin (2000 units/ml; Sigma Aldrich),
gentamicin (200 ug/ml; Sigma Aldrich) and amphotericin B (5
ug/ml; Sigma Aldrich). The viruses were manipulated in biosafety
level (BSL) 3 enhanced facilities in accordance with procedures
approved by the U.S. National Poultry Research Center (USNPRC)
Institutional Biosecurity Committee.

2.4. Animals and housing

One hundred and sixty-eight specific pathogen free (SPF) White
Leghorn chickens (SPAFAS flock) were randomized into groups
(Table S2). Vaccines were administered at 1 day of age by the sub-
cutaneous (SQ) route in 0.2 ml per bird with a target dose of 2,500
plaque-forming units (PFU). The actual dose given was determined
by back titration (Table S2). Groups that received the same vaccine
were housed together in negative pressured HEPA-filtered isolators
at the animal BSL 2 facilities of BIAH (BIAH USA Inc., Athens, GA,
USA) during the vaccination period. Birds were subsequently trans-
ferred separately by group to negative pressured HEPA-filtered iso-
lators at the animal BSL 3 enhanced facilities of the USNPRC for the
challenge period. Birds had ad libitum access to feed and water
throughout the experiment. This study was reviewed and approved
by the USNPRC Institutional Animal Care and Use committee.

2.5. Experimental design and sampling

Day-old chickens were vaccinated with vHVT-H5 construct or
sham-vaccinated with sterile HVT vaccine diluent (BIAH USA Inc.,
Gainesville, GA, USA) by the SQ route according to Table S2. Four
weeks post-vaccination (28 days of age), all birds were challenged
by the intrachoanal route with estimated 6 log10 EID50/0.1 ml of
either Tk/MN/15 or Egypt/14. The inoculum titers were subse-
quently verified as 6.9 and 5.7 log10 EID50, respectively, by back
titration in ECE. All the birds were monitored daily for 2 weeks fol-
lowing challenge for clinical signs andmortality. Severely sick birds
were euthanized and counted as dead for the next day in mean
death time (MDT) calculations. Oropharyngeal (OP) swabs were
collected at 2 and 4 days post-challenge (dpc) and placed in
1.5 ml of BHI with antibiotics and antifungal. Serum samples were
collected pre-challenge (26 days post-vaccination) and at termina-
tion (14 dpc). At 14 dpc, surviving birds were euthanized by cervical
dislocation.

2.6. Cross-reactivity: Hemagglutination inhibition and focus reduction
assay with diverse H5 antigens

The pre-challenge sera were tested by hemagglutination inhi-
bition (HI) and focus reduction assay (FRA) against a panel of
antigens of different clades to indirectly assess protection based
on cross-positivity and cross-neutralization, respectively. The HI
protocol was adapted from the WHO laboratory influenza surveil-
lance manual [42] with modifications [22]. Sera were pre-treated
with receptor destroying enzyme (Denka Seiken, Co., Japan)
resulting in a pre-dilution of 1:10 before the HI test. The FRA
was performed according to standard procedures [43,44] with
modifications [45].

Due to limited available sera, the HI (which requires less sera)
was the primary cross-positivity test and was used on 13 antigens,
while the FRA (which requiresmore sera) was the secondary test for
cross-neutralization confirmation and was restricted to six anti-
gens. Viruses representing avian and human strains that circulated
1935
in Asia, Africa, and North America between 2004 and 2017 were
obtained through the Influenza Reagent Resource (Table S3).
Viruses were passed once in ECE as per WHO instructions [46].
The HA titer for all viruses was determined using horse erythro-
cytes, and viruses were aliquoted for single-use applications.
Viruses were not available for A/chicken/Egypt/CAL3-RLQP/2017
and A/duck/Egypt/S78-RLQP/2017 strains, and VLP displaying the
corresponding HA and neuraminidase were used instead.
2.7. Serology against challenge viruses

The sera collected pre and post-challenge were tested by HI
assay to directly assess protection based on antibody levels against
H5 antigens specific for each corresponding challenge strain. The
antigens were prepared as previously described [47] and the HI
assays were performed according to standard procedures [48].
Titers were expressed as log2 geometrical mean titers (GMT).
GMT included only positive serum samples. Sera with titers below
4 log2 GMT were considered negative and expressed as 2 log2 GMT
for statistical purposes.
2.8. Determination of virus from swabs

Swab samples in BHI were processed for quantitative real-time
reverse transcriptase polymerase chain reaction (qRRT-PCR) [49]
with modifications [50] to determine viral RNA titers. The standard
curves for viral RNA quantification were established with RNA
extracted from dilutions of the same titrated stocks of the chal-
lenge virus. This is a standard protocol among published veterinary
influenza vaccine studies given the high correlation between the
quantity of RNA determined by qRRT-PCR and the EID50 deter-
mined by ECE titration when the same challenge virus stock is used
to generate the standard curve [51]. The limit of detection was 2.0
log10 EID50/ml for Tk/MN/15 and 1.7 log10 EID50/ml for Egypt/14.
2.9. Statistical analysis

All statistical analyses were performed using SAS v9.4 (SAS
Institute, Cary, NC) and R 3.1.1. All tests were two-sided and statis-
tical significance was declared at p value � 0.05. The proportion of
birds that exhibited positive swab results in the vaccinated groups
were compared against the challenge control group using a Fisher’s
Exact test in SAS 9.4 and the prevented fraction was calculated
using R 3.1.1. The magnitude of post-challenge swab results in
birds on 2 and 4 dpc was compared using the Exact Wilcoxon test.
Mitigated fraction and the associated 95% confidence intervals
were also calculated using SAS 9.4.
3. Results

3.1. Expression of recombinant viruses

The expression of H5 recombinant protein in each HVT vaccine
construct was evaluated by dual IFA assay (Figure S2). An average
of 300–400 viral plaques were dual-stained for HVT (parent virus)
and H5 HA (recombinant gene) expression. The total number of
plaques for each staining (HVT and H5) were compared and similar
number of plaques were identified in all cases, confirming that
almost all HVT viral plaques also expressed H5 antigen after 12
rounds of passage. Similarly, PCR and sequencing of X + 12 material
revealed no mutations in the X + 12 material when compared to
the reference sequence, confirming genome integrity of the recom-
binant viruses.
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3.2. Cross-reactivity of antibody responses in vaccinated chickens
against diverse Gs/GD viral clades

The pre-challenge sera from vaccinated birds were tested
against a panel of avian and human strains (Table S3) to assess
cross-positivity, as determined by HI (Fig. 1, Table 1), and
cross-neutralization, as determined by FRA (Fig. 2). As expected,
chickens injected with adjuvant only (sham) showed no HI posi-
tivity against any of the H5 test antigens (Fig. 1, Table 1). In gen-
eral, chickens vaccinated with COBRA-derived H5 (COBRA A,
COBRA B, and COBRA C) showed HI titers (�3 log2 HI titer)
against almost all clades. However, exceptions were observed
for clades 2.3.4 and 2.3.4.4A (only COBRA B elicited HI titers),
clade 2.3.4.4B (only COBRA C), clade 2.3.4.4D (none of the COBRA
vaccines), and clade 7.1 (only COBRA A). In contrast, chickens
vaccinated with wild-type clade 2.3.4.4A-derived H5 (vHVT501,
vHVT510, and vHVT510G) exhibited HI positivity only against
clades 2.3.4.4A and 2.3.4.4D and moderately against clade
2.3.4.2, with vHVT501 being slightly better. In line with the HI
results, COBRA-derived H5 elicited neutralizing antibodies against
diverse clades, while wild-type clade 2.3.4.4A-derived H5 had
superior neutralizing responses only against clades 2.3.4.4A and
2.3.4.4D (Fig. 2).
3.3. Clinical protection against homologous and heterologous HPAI
virus

After challenge, all sham-vaccinated birds showed acute severe
clinical disease and death, with an MDT of 2.6 dpc for both viruses
(Fig. 3). All vaccinated birds remained clinically healthy during the
observation period (14 dpc) with no clinical signs from the vacci-
nation or challenge (Fig. 3). The only exception was one
vHVT501-vaccinated and Egypt/14-challenged bird that was euth-
anized at 6 dpc due to prostration (Fig. 3b).
Fig. 1. Hemagglutinin inhibition (HI) cross-reactivity titers. Pre-challenge HI antibody ti
antigenic cross-positivity reaction. Values are expressed as log2 mean HI titers. Titers be

1936
3.4. Serology against challenge viruses

None of the sham-vaccinated birds had detectable HI antibody
titers before challenge (Fig. 4). In contrast, most vaccinated birds
had seroconverted against homologous Tk/MN/15 virus prior to
challenge, with GMT ranging 3.3 to 5.1 log2, except for COBRA A
(0/10 birds) (Fig. 4a). Similarly, most COBRA-vaccinated birds had
seroconverted against heterologous Egypt/14 virus prior to chal-
lenge, although GMT were slightly lower (3.0 to 4.6 log2) and
wild-type constructs vHVT501 (2/10 birds), vHVT510 (0/10 birds),
and vHVT510G (0/10 birds) had low or no seroconversion rates
(Fig. 4b). At termination, 50–100% of the vaccinated birds had
homologous Tk/MN/15 antibodies; detectable HI antibody titers
were similar or slightly higher (3.5 to 5.9 log2) than pre-
challenge titers, and only COBRA A-vaccinated birds had an
anamnestic response (2-fold increase) (Fig. 4a). Heterologous
groups with pre-challenge antibodies had slightly higher detect-
able HI antibody titers at termination, while the three constructs
with low pre-challenge seroconversion rates (especially
vHVT510G) had mounted an anamnestic response (2- to 3.4-fold
increase) at termination (Fig. 4b).
3.5. Virus shedding

All the sham-vaccinated birds excreted high virus titers in
oropharynx at 2 dpc following homologous Tk/MN/15 and heterol-
ogous Egypt/14 challenges (mean 7.2 and 6.2 log10 EID50/ml,
respectively) (Fig. 5). In homologous Tk/MN/15 challenged groups,
all vaccine constructs significantly decreased OP shedding titers
and number of birds shedding at 2 dpc compared to sham-
vaccinated birds, with no significant differences in titers or number
of birds shedding among vaccine groups (Fig. 5a). In heterologous
Egypt/14 challenged groups, all vaccine constructs significantly
decreased OP shedding titers at 2 dpc compared to the sham-
ters were assessed against a panel of 13 antigenically diverse Gs/GD H5 viruses for
low 3 log2 were considered negative.



Table 1
Breadth of cross-positivity reaction as measured by HI using pre-
challenge sera from vaccinated birds and tested against a panel of
13 viruses from different H5 clades (as per Fig. 1 and Table S3).

Vaccine Coverage by HI1

vHVT501 4/13 (31%)
vHVT510 3/13 (23%)
vHVT510G 3/13 (23%)
COBRA A 8/13 (62%)
COBRA B 10/13 (77%)
COBRA C 9/13 (69%)
Sham 0/13 (0%)

1 Titers below 4 log2 GMT were considered negative.
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vaccinated birds, but the number of birds shedding was not signif-
icantly reduced. Statistically significant differences in mean virus
titers were observed among certain vaccinated groups both at 2
and 4 dpc with Egypt/14 virus, with a tendency of COBRA-
vaccinated chickens (COBRA A, COBRA B, COBRA C) to shed signif-
icantly lower virus titers than wild-type 2.3.4.4A-vaccinated chick-
ens (vHVT501, vHVT510, vHVT510G). One exception was the
vHVT510-vaccinated group, which mean virus titers were similar
to COBRA-vaccinates. Although the difference in mean virus titers
between vHVT510- and vHVT510G-vaccinated chickens at 2 dpc
was in the limit of significance (p = 0.05093), this difference
became significant at 4 dpc (Fig. 5b).
4. Discussion

One of the challenges in developing vaccines for ongoing use in
poultry is the genetic and antigenic diversity within the H5 Gs/GD
lineage [6]. The wide geographic dispersion of Gs/GD viruses with
regional isolation and the long-term utilization of vaccines for the
control of H5 AI have been associated with genetic and antigenic
drift and the emergence of vaccine-resistant field viruses
Fig. 2. Focus reduction assay (FRA) cross-neutralization titers. Pre-challenge neutralizati
for antigenic cross-neutralization reaction. Values are expressed as percentage of cells p
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[52–59]. Thus, vaccines that can protect against antigenically dis-
tinct and diverse co-circulating viruses and future drift variants
are necessary. The COBRA technology generates synthetic consen-
sus antigen-based vaccines that broaden the repertoire of neutral-
izing antibodies [18–22], but even with this broadening, their
efficacy has encountered some limitations when used in non-
replicating vaccine platforms [22]. We conducted a vaccine protec-
tion study in chickens using HVT, a widely used replicating vaccine
platform in poultry, as a vector. We tested experimental vHVT-H5
vaccines containing wild-type clade 2.3.4.4A-derived HA
sequences (vHVT501, vHVT510, vHVT510G) and COBRA HA
sequences (COBRA A, COBRA B, COBRA C) derived from clade 2
human-origin viruses with challenge by homologous and geneti-
cally divergent H5 HPAI viruses. We directly assessed protection
by observing clinical signs and mortality and by measuring reduc-
tion in challenge virus shedding from the oropharynx. In addition,
we indirectly assessed protection by evaluating cross-reactivity of
HI and/or FRA responses on pre-challenge sera against a diverse
panel of Gs/GD viruses.

All the tested constructs provided clinical protection against the
homologous and a heterologous H5 HPAI Gs/GD challenge viruses.
All vaccines were also able to significantly decrease OP shedding
titers compared to the sham vaccine. This was especially notewor-
thy on groups challenged with the homologous strain, which also
had significantly fewer birds shedding challenge virus than the
sham group. Previous studies with traditional inactivated vaccines
indicate that, once they provide protection, their ability to decrease
challenge virus replication and shedding from the oropharynx
requires a close genetic relationship between vaccine and chal-
lenge viruses [47,59–65]. The use of antigenic epitope enhance-
ment computerized techniques such as COBRA, like the increase
of immunization doses or the use of immune adjuvants [66,67],
has been a strategy in non-replicating vaccine platforms to over-
come such limitations, with variable success [18–22]. Here, we
note that COBRA-derived constructs, which shared <92% HA amino
on titers were assessed against a panel of six antigenically diverse Gs/GD H5 viruses
rotected from viral cytopathic effect at different serum dilutions.



Fig. 3. Survival curves of chickens vaccinated with vHVT-H5 containing one of six
different HA inserts or sham-vaccinated, and either challenged with (a) clade
2.3.4.4A A/turkey/Minnesota/12582/2015 H5N2 HPAI virus (Tk/MN/15) or (b) clade
2.2.1 A/Egypt/N04915/2014 H5N1 HPAI virus (Egypt/14).
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acid similarity with the homologous challenge virus, provided sim-
ilar virus shedding reduction than wild-type 2.3.4.4A-derived con-
structs, which shared almost 99% HA amino acid similarity with
the homologous challenge virus. While significant reduction of
viral shedding titers was also achieved by all constructs upon
heterologous challenge, COBRA-derived constructs did so more
efficiently, probably because of their higher amino acid similarity
with the heterologous challenge virus (95.2–96%) compared to
wild-type 2.3.4.4A-derived constructs (90–90.5%).

In our recent study, two COBRA H5 VLP vaccine constructs pro-
vided clinical protection and significant reduction of shedding in
chickens challenged with a lethal dose of homologous H5N1 HPAI
virus [22]. However, upon challenge with a drifting H5N1 HPAI
variant, their effectiveness differed; while both COBRA vaccines
significantly decreased shedding titers compared to shams, the
COBRA vaccine based on human H5 sequences provided 80% clin-
ical protection, yet the COBRA vaccine based on human and avian
H5 sequences did not prevent mortality [22]. Here, we observed
better protection from a drift variant than our previous study
[22], even though HA amino acid similarity between their homol-
ogous and heterologous challenge viruses was greater (93.5%) than
ours (90.5%). Possible reasons for our better results compared to
our recent study [22] include: i) an improved computerized
technique of the COBRA inserts; and ii) the use of the replicating
vaccine platform HVT that, in contrast to the non-replicating VLPs,
can maintain sufficient antigen doses over time that strongly
stimulate both humoral and cell-mediated immunity [23–27]. In
1938
addition to these efficacy results, the practicality of HVT as a vac-
cine platform, i.e. a licensed vaccine already used worldwide
against MD, makes this an optimal technology to be coupled with
COBRA technology.

When assessing antibody responses against the challenge virus,
pre-challenge HI titers and numbers of birds with detectable titers
were overall slightly higher when the Tk/MN/15 strain was used
for challenge, which likely explained viral shedding results. Simi-
larly, when assessing the breadth of protection, COBRA-derived
H5 vaccines elicited a broader protection based on HI and FRA
against most of the antigenically diverse Gs/GD viruses than the
wild-type 2.3.4.4A-derived H5 vaccines. In contrast, and as
expected, wild-type clade 2.3.4.4A-derived H5 vaccines elicited
responses mostly against close genetically related clade 2.3.4.4
groups A and D viruses. In line with these results, in our previous
study COBRA H5 VLP vaccines elicited broader HI antibody
responses than VLP displaying wild-type clade 2.2 HA protein
[22]. Our assessment of protection both by challenge virus HI anti-
bodies and by HI cross-positivity and FRA cross-neutralization sug-
gest that vHVT with COBRA H5 inserts are better candidates for
vaccine preparedness than wild-type H5 inserts, as they can elicit
neutralizing antibodies against drifting clade 2.3.4.4 variants as
well as viruses from other Gs/GD clades.

One of the clade 2.3.4.4A H5 insert candidates (vHVT510G) con-
tained a glycosylation at residue A156T of the globular head of the
HA, around the receptor binding domain. It has long been recog-
nized that glycosylation can impact HA immunogenicity by mask-
ing epitopes [68–72]. Glycosylation at 154–156 residues in
particular, which has been observed in avian H5N1 isolates from
Egypt and Pakistan [73,74], is associated with higher virus replica-
tion efficiency [75–77]. Here, vHVT510 and vHVT510G elicited
antibodies that showed similar restricted HI cross-positivity and
FRA cross-neutralization among genetically related strains, indicat-
ing that glycosylation at 154–156 residues encoded by the vaccine
had little impact on the breadth of HI responses against closely
related H5 viruses, as previously concluded in a DNA vaccine study
in mice [78]. Regarding serology responses against the challenge
viruses, we found similar pre-challenge (or primary) responses eli-
cited by vHVT510 and vHVT510G. However, secondary (or
anamnestic) responses were greater in vHVT510G-vaccinated
birds, especially following heterologous challenge. This suggests
that the non-glycosylated construct was more immunogenic than
its glycosylated counterpart, as it probably provided a better pri-
mary antibody response that was able to more efficiently reduce
replication of challenge virus upon heterologous challenge, thus
generating less of an anamnestic response.

It should be noted that HI titers are not absolutely predictive of
efficacy for a particular H5 strain in chickens [22]. The only bird
that succumbed infection lacked pre-challenge HI antibody titers,
but many vaccinated survivors lacked HI antibodies as well. This
suggests that the presence (>4 log2 GMT) of pre- and post-
challenge HI antibody titers against the challenge virus may be a
positive predictor for survival, but HI titers � 4 log2 GMT may
not consistently be a negative predictor with antigenic variants.
Similarly, previous studies showed HI serology �8 GMT (i.e., 3
log2 GMT) [79] or �10 GMT (i.e., 3.3 log2 GMT) [61] was associated
with protection in challenge studies when the vaccine and field
viruses were genetically and antigenically similar [24]. Likewise,
another study showed that the lack of antibodies did not predict
death [59]. It is apparent that viral vector vaccines do not necessar-
ily produce high levels of antibodies as measured by HI, and pro-
tection also derives from cell-mediated immunity, IgA mucosal
immunity to uncharacterized influenza viral proteins, or humoral
immunity from non-HI antibodies, such as antibodies to conserved
regions in the HA stalk or in other viral proteins, as previously
observed in studies in poultry [26,29,34–36,59,80–83] and



Fig. 4. Serology of chickens vaccinated with vHVT-H5 containing one of six different HA inserts or sham-vaccinated, and either challenged with (a) clade 2.3.4.4A A/turkey/
Minnesota/12582/2015 H5N2 HPAI virus (Tk/MN/15) or (b) clade 2.2.1 A/Egypt/N04915/2014 H5N1 HPAI virus (Egypt/14). HI antibody titers against corresponding challenge
viruses pre- and post-challenge. Titers are expressed as log2 GMT. GMT includes only positive serum samples. Samples with titers below 3 log2 GMT were considered
negative. Ratios above the bars indicate the number of birds with HI titers from the total number of birds. All sham-vaccinated challenged birds were either dead or
euthanized due to clinical signs before collection of post-challenge serum.
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mammals [84–89]. Currently, the HI assay is the established
in vitro correlate of protection in chicken studies, but the lack of
harmonization in vaccine efficacy studies may hamper the estab-
lishment of a cut-off protective level of antibodies [24].

In conclusion, the present study demonstrates that the
replicating HVT vector vaccine platform with H5 insert provides
clinical protection and significant reduction of viral shedding
against homologous and heterologous challenge. COBRA-derived
constructs prevented virus replication of heterologous challenge
more efficiently and elicited broader HI cross-positivity and FRA
cross-neutralization antibody responses than wild-type inserts,
1939
with a potential for protection against drifting variants. Consider-
ing all parameters tested, the COBRA C construct showed the most
promising results and will be selected for further investigation.
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Fig. 5. Scatter plot of oropharyngeal (OP) shedding from chickens vaccinated with
vHVT-H5 containing one of six different HA inserts or sham-vaccinated, and either
challenged with (a) clade 2.3.4.4A A/turkey/Minnesota/12582/2015 H5N2 HPAI
virus (Tk/MN/15) or (b) clade 2.2.1 A/Egypt/N04915/2014 H5N1 HPAI virus (Egypt/
14). Shedding titers are expressed as equivalent log10 EID50/ml with error bars
included. The limit of detection was 2.0 log10 EID50/ml for Tk/MN/15 and 1.7 log10
EID50/ml for Egypt/14. All samples with titers lower than 2.0 (homologous
challenge) or 1.7 (heterologous challenge) were considered negative. For statistical
purposes, all the negative samples were assigned the value of 1.9 or 1.6 log10 EID50/
ml for Tk/MN/15 and Egypt/14 groups, respectively. Statistical significance was
declared at p value � 0.05. P values are represented as: * for p � 0.05; ** for p < 0.01;
*** for p < 0.001; and **** for p < 0.0001.
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